
7 DISCRETE AND STOCHASTIC SYSTEMS

7.1 Discrete Systems

Recall our basic continuous system in state space form,

ẋ = Ax + Bu ,

y = Cx .

A control system that is to be implemented using a digital computer, as is usually the case,
is in a discrete state space form,

xn+1 = Adxn + Bdun ,

yn = Cdxn .

The first thing we have to do is to be able to go from the continuous to the discrete model.
We start with the solution to the state equations in the form

x(t) = eA(t−t0)x(t0) +
∫ t

t0
eA(t−τ)Bu(τ) dτ .

We can use this solution over one sample period T to obtain a difference equation. Let

t = nT + T ,

t0 = nT ,

and we get

x(nT + T ) = eAT x(nT ) +
∫ nT+T

nT
eA(nT+T−τ)Bu(τ) dτ .

Now assume that the input does not change within one sample period,

u(τ) = u(nT ) for nT ≤ τ < nT + T .

We refer to this operation as the zero–order hold with no delay. Then, by defining the
auxiliary variable

η = nT + T − τ ,

we get

x(nT + T ) = eAT x(nT ) +
∫ T

0
eAηBu(nT ) dη .

Therefore, the system

ẋ = Ax + Bu ,

y = Cx ,

becomes

xn+1 = Adxn + Bdun ,

yn = Cdxn ,
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Figure 1: Stable poles for continuous and discrete systems

where

Ad = eAT ,

Bd =
∫ T

0
eAηB dη ,

Cd = C ,

and T is the sample period. The MATLAB command c2d automates the above conversion
from continuous to discrete form.

A low sample period T ; i.e., high sample rate, is in general desirable for good performance
so that we can approximate the continuous model as closely as possible. This, however, will
demand a fast computer and A/D and D/A converters. It should be emphasized here that
low T is always with respect to the response time of the physical system. Low T for one
system may be high for a different system. Low sample rate, high T , may lead to instabilities
when the design is based on the continuous system. In such a case we should switch to a
direct discrete design. This means that the continuous system is discretized first, and any
compensator design is based on the discrete version. Fortunately this parallels the continuous
design we have already developed.

We can place the poles of a discrete system to desirable locations by linear state variable
feedback,

un = −Kxn ,

and if not all states are measurable we can use a discrete full–order estimator,

x̂n+1 = Adx̂n + Bdun + L(yn − Cdx̂n) .

We can find the gain matrices K and L by poleplacement of

Ad − BdK ,

and
Ad − LCd .
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We already know how to do the poleplacement design, the only thing we need to know is:
When is a discrete system xn+1 = Axn stable? We can see this by considering a scalar
system. Consider the continuous system

ẋ = ax .

The solution is x(t) = eatx(0) so if �{a} < 0 the system will be stable. The discrete system

xn+1 = axn ,

has

x1 = ax0 ,

x2 = ax1 = a2x0 ,

x3 = ax2 = a3x0 ,

and, finally,
xn = anx0 .

For stability, we want xn → 0 as n → ∞, or an → 0, which means that we want

|a| < 1 .

Therefore, the discrete time system xn+1 = Axn is stable if and only if all eigenvalues of A
have absolute value less that one; i.e., they are located inside the unit circle in the s–plane,
see Figure 32. Since the continuous matrix A becomes eAT when discretized, we can argue
that an eigenvalue which is equal to λ for a continuous system, corresponds to an eigenvalue
equal to eλT for a discrete system with sample period T . By keeping this analogy in mind we
can do in discrete time everything we did in continuous time. The corresponding MATLAB
commands have the same names with simply the prefix d in front, for example dlqr will do
the discrete LQR design.

As an example, consider the system

ẋ = x + u ,

which is open–loop unstable. A control law of the form u = −2x places the closed loop pole
of the continuous system at −1, this means that the continuous system has a time constant 1
second. Now let’s discretize the system using a sample period T , we set the closed loop pole
of the discrete system at e−T . How different will be the discrete gain from the continuous
gain 2? This should depend strictly on T . If T is very small compared to 1, the time constant
of the system, then the two gains must be relatively close. Ten times smaller should be small
enough. On the other hand, if T is of the same order of magnitude as 1, we have to compute
the gain from the discrete design. This is illustrated by the results of Figure 33 where we
present the discrete time gain for a discrete closed loop pole at e−T , versus T for T from 0.01
sec to 1 sec. This corresponds to sample rates from 100 Hz to 1 Hz, respectively.
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Figure 2: Discrete system example
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7.2 Stochastic Processes

To this point we have treated the entire control/estimation problem as deterministic; every-
thing had a known value at each time. In real world problems, however, there are quantities
which we can only describe probabilistically, for example sensor characteristics or sea waves.
There are unpredictable disturbances and measurement noise which occur during operation
of real systems. These disturbances and noise can be modeled as stochastic processes. A
very useful special class of stochastic processes is the Gauss–Markov process which can be
completely described by the following:

1. Its mean value vector x,
x︸︷︷︸

(n×1)

≡ E [x(t)] ,

which gives the expected value or ensemble average of all possible observations at time
t; this is the most likely value.

2. Its correlation matrix C,

C(t, τ)︸ ︷︷ ︸
(n×n)

≡ E
{
[x(t) − x(t)] [x(τ) − x(τ)]T

}
,

which is a symmetric matrix and gives the relationship between the deviation from the
mean at time t to the deviation from the mean at a different time τ .

When t = τ , this correlation matrix becomes the covariance matrix which measures the
mean square deviation of the state vector from the mean; i.e.,

X(t)︸ ︷︷ ︸
(n×n)

≡ C(t, t) = E
{
[x(t) − x(t)] [x(t) − x(t)]T

}
.

At any time t, the state x(t) is normally distributed (Gaussian distribution) about the mean
and the diagonal elements of X(t) give the variance (standard deviation squared) for the
associated elements of x.

A special Gauss–Markov process is the purely random process. This is an idelized, very
jittery process which is completely uncorrelated from one time to the next. This is a useful
model for disturbances or noise which change very rapidly compared with the time response
of a system. The correlation matrix for a purely random process is

C(t, τ) = Q(t)︸ ︷︷ ︸
(n×n)

δ(t − τ) ,

where Q(t) is the power spectral density, and δ(t− τ) is the Dirac delta function; this is zero
everywhere except at t = τ where it assumes a “value” such that

∫ +∞
−∞ δ(t − τ)dτ = 1. This

can be viewed as the limit of a sequence of impulses of random magnitude (equal plus and
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minus so the mean is zero; average square magnitude is σ2(t)) and random time of occurence.
For such a sequence,

Q(t) ≈ 2 [σ(t)]2 β(t) ,

where β(t) is the average number of occurences per unit time.

The key behind using Gauss–Markov processes is that a Gauss–Markov process can al-
ways be represented by a state vector of a linear dynamical system forced by a Gaussian
purely random process where the initial state vector is Gaussian. Thus,

ẋ = Ax + Γw ,

where

E[w(t)] = w = 0 ,

E
[
w(t)wT

]
= Q(t)δ(t − τ) ,

E [x(t0)] = x0 ,

E
{
[x(t0) − x0] [x(t0) − x0]

T
}

= X0 ,

E
{
[w(t) − w] [x(t0) − x0]

T
}

= 0 .

The forcing disturbance w and the initial state x(t0) are completely independent or uncor-
related. Recall the state property for deterministic systems: knowing the current state and
the state equation completely defines the future for zero control. The Markov property is
completely parallel to this: knowing the current state mean x0 and covariance matrix X0

completely defines the future mean and covariance for zero control when subjected to the
disturbance described by w = 0 and Q. The Gaussian property states that the state will
always be normally distributed about the mean value in accordance with the variance (stan-
dard deviation squared) given by the diagonal elements of the covariance matrix. Thus for
one state x, it will be within one standard deviation σ of x 68.3% of the time; within 2σ of
x 95.5% of the time; within 3σ of x 99.7% of the time. For multiple states these percentages
decrease as shown in the following table:

n σ 2σ 3σ
1 68.3 95.5 99.7
2 39.4 86.5 98.9
3 20.0 73.9 97.1

The mean value vector of a Gauss–Markov process obeys the state differential equation

ẋ = Ax + Γw , x(t0) = x0 .

The covariance matrix obeys equation

Ẋ = AX + XAT + ΓQΓT , X(t0) = X0 ,

which is completely independent and which could be calculated in advance. Note that the
term AX + XAT represents the effect of the system dynamics and it may decrease X for
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Figure 3: Response of first order system to noise

Figure 4: “Snapshots” of Figure 34 at different times
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a stable system, while the other term ΓQΓT represents the effect of the disturbance and it
always increases X since we have a positive definite Q.

We can visualize this by considering a simple first order system so that all the above
matrices are scalars. A stable first order system with an initial mean x0 and small standard
deviation σ0 could be released while subjected to noise. It could respond as shown in Figure
34 for large noise. As an example suppose we have the system

ẋ + 2x = w ,

where w is zero mean, purely random (white noise), x is exactly 1 at t = 0. At this time, x
is released and the disturbance w with power spectral density Q = q = 3 begins to act on
the system. We want to determine the mean and the covariance of the response. The mean
will follow the state equation

ẋ = Ax + Γw = −2x , x(0) = 1 , A = −2 ,

and w = 0 since w is white noise. The solution for the mean is

x(t) = e−2t .

The covariance will follow equation

Ẋ = AX + XAT + ΓQΓT , Q = q = 3 , Γ = 1 ,

or
Ẋ = −2X − 2X + q ,

and, with exact knowledge at t = 0, the initial condition is X(0) = 0. The solution is

X(t) = 0.75
(
1 − e−4t

)
= σ2 ,

the variance of x(t) about its mean x(t), refer to Figure 35.

normally distributed
t x X σ
0 1 0 0

0.5 0.368 0.648 0.805
∞ 0 0.750 0.866

Most physical disturbances can be modeled by one of the following special cases:

1. White noise: A stationary, purely random Gauss–Markov process with zero correlation
time (see below) and constant power spectral density,

C = Qδ(t − τ) .

2. Random bias: A random, unpredictable constant with infinite correlation time and
constant correlation. In this case we introduce

ẋn+1 = 0 , xn+1(t0) = random .

8



Figure 5: White noise and random bias

Figure 6: Exponentially correlated noise

We add a new, constant state to the system of equations; i.e., we augment the state equations
and estimate xn+1 along with the rest of the states xi, i = 1, . . . , n, as we have already
seen before. As examples, a disturbance which changes rapidly compared to the dominant
dynamics of the system can be modeled as white noise; e.g. wave effects on the steering of a
large tanker. A disturbance which changes very slowly compared to the dominant dynamics
of the system can be modeled as a random bias; e.g. tidal current on ship steering.

3. Exponentially correlated noise: Between the two extremes where white noise and
random bias models are appropriate, are disturbances which change on the same time scale
as the dominant dynamics of the system. These disturbances have finite, non–zero correlation
times τc. The simplest can be modeled as a first order system driven by white noise; i.e.,

τcẋn+1 + xn+1 = w .

In these cases the state vector can be augmented with xn+1. Disturbances which change with
about the same dynamics as the system must be modeled with a finite τc; e.g. the force and
moment produced by a passing ship during underway replenishment. The above equation
is called a shaping filter because it “shapes” white noise w to produce another disturbance
xn+1 which is called “colored” noise. The correlation time is the same as the time constant
of the disturbance variation, this can be obtained by considering the physics of the problem.
For example, if the disturbance is the force produced by a passing ship we can take τc to be
approximately the time it takes to travel a ship length.
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To complete the model for the exponentially correlated disturbance it is necessary to
specify the power spectral density of the white noise w. This is given by,

q = 2σ2τc ,

where

σ = root mean sqaue (RMS) noise level,

τc = correlation time.

The same formula is also used in design to establish the power spectral density of disturbances
modeled as white noise. In that case the correlation times (modeled as zero) are actually
small nonzero quantities compared to the time constants of the system. In practice this can
be the integration time step in simulations, or the sample time in experiments.

More complex models for modeling disturbances are also possible, this is a trade–off
between accuracy and simplicity. Of great interest to naval engineering is the modeling of
the disturbance due to waves. The simplest approach would be to model this as white noise,
this is very accurate for large ships. For smaller vessels it might be worth modeling the
periodic nature of the disturbance. There are a couple of ways to do this. If we assume a
sinusoidal wave as the dominant model for waves in the area, we can use a second order
model driven by white noise w,

ÿ + ω2y = w ,

where ω is the assumed frequency of the dominant wave (usual periods of sea waves are in
the 6 to 15 sec range), and y is the amplitude of the disturbance. In state space form then
we need to augment our system with two additional equations

ẋn+1 = xn+2 ,

ẋn+2 = −ω2xn+1 + w ,

where y = xn+1 and ẏ = xn+2. More accurate descriptions of the seaway are also used. A
typical description follows the so–called Pierson–Moskowitz wave spectrum given by

S(ω) =
a

ω5
e−b/ω4

,

where a, b are constants describing the particular seaway. Such a spectrum can be simulated
by feeding a white noise signal into a suitable shaping filter. As an example, for a significant
wave height (the average of the highest one third of all wave heights) of 7 m and a mean
wave period of 9.4 seconds we have a = 0.78 and b = 0.063. Then the rational spectrum

SR(ω) =
b2
2ω

2

ω6 + (a2
1 − 2a2)ω4 + (a2

2 − 2a1a3)ω2 + a2
3

,

with a1 = 0.5, a2 = 0.33, a3 = 0.07, and b2 = 0.415 can be used as an approximation of S(ω)
for the chosen sea state. When both S and SR are plotted versus ω the agreement is good.
For details see the article “Control of yaw and roll by a rudder/fin stabilization system”
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by Kallstrom in the Proceedings of the Sixth Ship Control Systems Symposium, 1981. A
stochastic process with spectral density given by SR can be obtained as output from the
filter

G(s) =
b2s

s3 + a1s2 + a2s + a3

,

with white noise as input. A similar model can be built for approximating the wave slope
spectrum,

Ss(ω) =
ω4

g2
S(ω) ,

and either one or both wave height and wave slope models can then be used for realistic
design and simulations.

7.3 Kalman Filter

We present now the maximum likelihood, stochastic observer or filter for a nonstationary
Gauss–Markov process. This will be seen to be completely parallel to the deterministic
observer discussed in Section 3. We will sketch the derivation of the continuous time Kalman
filter using calculus of variations in a manner which parallels our derivation of the optimal
control law in 6.6.

Recall our classical full order observer design

˙= A + Bu + L(y − C) .

In general, we would like to place the observer poles as negative as possible, this will create
large elements of the observer gain matrix L. The larger the L, the faster the error in the
observer dynamics will decay to zero. A very large L, however, will amplify undesirable noise
which is always present in real systems. Therefore, there seems to be a limit on L which
should depend on the level of noise in the system; this in turn should be directly related
to the quality of our sensors and the disturbances. The Kalman filter is this best value for
L and it provides an optimal stochastic observer, just like the linear quadratic regulator
provided an optimal controller.

Consider the system
ẋ = Ax + Bu + Γw ,

where w is a purely random process, and

E[x(t0)] = x0 ,

E
{
[x(t0) − x0][x(t0) − x0]

T
}

= P0 ,

which is the covariance of the error in the estimate of the state (t0) at t0. Initially we assume
that (t0) = x0: the most likely estimate at t0 is the mean value at that time. In general,

P (t) = E
{
[(t) − x(t)][(t) − x(t)]T

}
= E

[
(t)T (t)

]
,
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where ≡ −x is the error in the estimate of the state. The disturbance w in the state equations
is a purely random process with

E[w(t)] = 0 , zero mean,

E[w(t)wT (t)] = Q(t)δ(t − τ) ,

where Q is the power spectral density matrix. We want to estimate the state vector (t) using
a set of noisy measurements,

y = Cx + v ,

where the measurement noise v is another purely random process with

E[v(t)] = 0 , zero mean,

E[v(t)vT (t)] = R(t)δ(t − τ) .

What we want to do is to generate an estimate of both x and w which enter the state
equations. This can be done in a least square sense if we minimize the cost function

J = 1
2

[
(x0 − x0)

T P−1
0 (x0 − x0)

]
+ 1

2

∫ tf

t0

[
wTQ−1w + (y − Cx)T R−1(y − Cx)

]
dt .

Observe that the first term minimizes the error in the initial estimate; the second term
minimizes the error in the estimate of w; and the third term minimizes the error in the
estimate of x. The minimization is subject to the constraints

ẋ = Ax + Bu + Γw ,

y = Cx + v .

Following a process similar to the LQR design, we can define the Hamiltonian

H = 1
2

[
wTQ−1w + (y − Cx)T R−1(y − Cx)

]
+ λT (Ax + Bu + Γw) ,

and formulate the Euler–Lagrange equations, as before. We can find then that the optimal
observer has the familiar form,

˙= A + Bu + L(y − C) , (t0) = x0 ,

where L is the Kalman filter gain matrix

L = PCTR−1 ,

and P is the solution of the forward matrix Riccati differential equation

Ṗ = AP + PAT + ΓQΓT − PCTR−1CP ,

P (t0) = P0 .

In the steady state case, these results become

L = PCTR−1 ,
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where now P is the solution to the algebraic Riccati equation

AP + PAT + ΓQΓT − PCT R−1CP = 0 .

The positive definite solution defines P , the covariance of the error in the estimate of the
state .

As an example, consider the system

ẋ = −2x + w , so A = −2, Γ = 1,

y = x + v , so C = 1.

The disturbance w is exponentially correlated with a correlation time

τw = 0.01 ,

and root mean square value
σw = 1.2 .

The measurement noise v is also exponentially correlated with correlation time

τv = 0.01 ,

but with an RMS value
σv = 0.2 .

We want to design a Kalman filter to produce a best estimate of x from y. The system has
the time constant

T = 0.5 � 0.01 ,

so we can model both the disturbance and noise as white noise compared with the dynamics
of the system. The power spectral densities are estimated as

for w : Q ≈ 2σ2
wτw = 2(1.2)20.01 = 0.0288 ,

for v : R ≈ 2σ2
vτv = 2(0.2)620.01 = 0.0008 .

Our filter is given by
˙= −2 + L(y−) , L = PR−1 .

To find P we use the algebraic Riccati equation

−2P + P (−2) + 0.0288 − P
1

0.0008
P = 0 ⇒

P 2 + 0.0032P − 0.00002304 = 0 ⇒
P = 0.00346 ,

the positive root. Then

L = PR−1 =
0.00346

0.0008
= 4.3246 ,
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giving
˙= −2 + 4.3246(y−) = −6.3246 + 4.3246y .

The error in the estimate produced by the filter is

˙ = ˙− ẋ

= A + Bu + L(Cx + v − C) − Ax − Bu − Γw

= (A − LC) + Lv − Γw

= (−2 − 4.3246) + 4.3246v − w

= −6.3246 + 4.3246v − w .

The eigenvalue of the filter is at −6.3246 which is well to the left of the system eigenvalue,
−2, so the estimate will converge fast compared to the system.

7.4 The LQG Compensator

Recall that the separation principle allowed us to design the controller and the estimator
separately and then use instead of x in the control law. The same principle states here that
the optimal way to control a system

ẋ = Ax + Bu + Γw ,

is to use a Kalman stochastic observer to estimate the state from the noisy measurements

y = Cx + v ,

and then use this estimate with the optimal deterministic linear controller we have already
developed. The optimal controller can be derived from the LQR design, or we can use any
kind of state feedback and feedforward we desire. The key is that we have no control over the
poles of the observer here, nor can we choose the Q and R matrices that enter the Kalman
filter design. These are set by the quality of our sensors and the level of the disturbances.
After computing L from the Riccati equation, we should find the observer poles from the
eigenvalues of (A−LC) and make sure that they are more negative (the dominant pole) than
the dominant poles of the controller. This can be done directly if we use poleplacement or
indirectly by changing the weighting matrices in the LQR design. In case that the controller
poles are not satisfactory, it is time to get better sensors!

The above combination of the optimal controller (LQR) and the optimal stochastic ob-
server (Kalman filter) is called the Linear Quadratic Gaussian (LQG) compensator. This
theoretical result produces a control system which is completely parallel to the deterministic
observer and controller derived previously, except that now the controller and observer gain
matrices are theoretically derived to yield optimal performance in the presence of stochastic
disturbances w and measurement noise v.

Summarizing the total design problem, we have:
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• State x,
ẋ = Ax + Bu + Γw , x(t0) = x0 ,

with

E[wwT ] = Qδ(t − τ) , white noise ,

E[w] = 0 ,

covariance X =
[
(x − x)(x − x)T

]
.

• Estimate ,
˙= A + Bu + L(y − C) , (t0) = x0 ,

with covariance
X̂ =

[
(−x)(−x)T

]
.

• Error in estimate ,
= −x ,

with covariance
P =

[
(−x)(−x)T

]
= E

[
T
]

.

• Measurements y,
y = Cx + v ,

with

E
[
vvT

]
= Rδ(t − τ) , white noise ,

E[v] = 0 .

• Controller,
u = −K ,

• Controller gain K,
K = R−1BT S ,

where
AT S + SA − SBR−1BT S + Q = 0 ,

• Estimator gain L,
L = PCT R−1 ,

where
AP + PAT + ΓQΓT − PCT R−1CP = 0 .

It should of course be emphasized that the matrices Q and R that enter the controller design
are completely different than those in the observer design. The block diagram of the LQG
design is shown in Figure 38.
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Figure 7: Compensator block diagram
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7.5 Linear Quadratic Gaussian Compensator block diagram

With the optimal design developed above the performance can be evaluated either prob-
abilistically or deterministically using computer simulation. Here we will develop the root
mean square (RMS) response which can be easily computed for linear systems and can serve
as a comparison index for different designs. If we wish to establish the response of the state
about zero (the states are defined as deviations from nominal), we can begin with the filter
response. Using the previous equations,

˙ = (A − BK) + L[C(x−) + v] ,

˙ = (A − BK) − LC + Lv , (t0) = x0 = 0 .

The dynamics in the error are governed by,

˙ = ˙− ẋ

= A + Bu + L(Cx + v − C) − Ax − Bu − Γw

= (A − LC) + Lv − Γw ,

with
(t0) = x0 − x(t0) = −x(t0) .

From the ˙ and ˙ equations we can see that is statistically independent of , so

E
[
(t0)

T (t0)
]

= 0 ,

and
E

[
(t)T (t)

]
= 0 .

We can, therefore, establish the covariance of the state to be given by

X = E
[
x(t)xT (t)

]
= E

[
(−)(−)T

]
= E

[
T
]
− E

[
T
]
− E

[
T
]
− E

[
T
]

= E
[
T
]
− E

[
T
]

.

This gives
X(t) = X̂(t) + P (t) ,

or, at steady state,
X = X̂ + P ,

which says that

(covariance of state) = (covariance of estimate of state)

+(covariance of error in estimate of state) .

We already know how to obtain P and thus we need X̂ to obtain X, and the RMS response of
the state x which is given by the square root of the diagonal terms in X. If we use the above
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equation in the definition of the covariance X̂ we can finally obtain the following differential
equation for X̂,

˙̂
X = (A − BK)X̂ + X̂(A − BK)T + PCT R−1CP = 0 , X̂(t0) = 0 ,

which in the steady state yields the linear matrix equation,

(A − BK)X̂ + X̂(A − BK)T + PCTR−1CP = 0 ,

which can be solved for X̂ and then used in X = X̂ + P to obtain X.

The root mean square (RMS) use of the controls u can be derived directly from the
definition of its covariance,

U ≡ E
[
uuT

]
= E

[
(−K)(−K)T

]
= KE

[
T
]
KT = KX̂KT .

The square root of the associated diagonal elements of X and U give the RMS value of the
states and controls, respectively, when the system is subjected to the disturbances w de-
scribed by Q and the measurement noise described by R. The above equations are estimates
of the RMS value of the response of a system and can be used for comparing different con-
trol and estimator designs. It should be borne in mind that they are not valid for nonlinear
systems; they can not be used when the control effort saturates, for example. In these cases
the associated RMS values of the variables of interest should be computed numerically by
simulation.
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